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Abstract

Previous biological models of object recognition in cortex have been evaluated using
idealized scenes and have hard-coded features, such as the HMAX model by Riesen-
huber and Poggio [10]. Because HMAX uses the same set of features for all object
classes, it does not perform well in the task of detecting a target object in clutter.
This thesis presents a new model that integrates learning of object-specific features
with the HMAX. The new model performs better than the standard HMAX and com-
parably to a computer vision system on face detection. Results from experimenting
with unsupervised learning of features and the use of a biologically-plausible classifier
are presented.
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90, and 135 degrees) and scales. These filters are analogous to the

simple cell receptive fields found in the V1 area of the brain. The C1

layer responses are obtained by performing a max pooling operations

over S1 filters that are tuned to the same orientation, but different

scales and positions over some neighborhood. In the S2 layer, the

simple features from the C1 layer (the 4 bar orientations) are combined

into 2 by 2 arrangements to form 256 intermediate feature detectors.

Each C2 layer unit takes the max over all S2 units differing in position

and scale for a specific feature and feeds its output into the view-tuned

units. In our new model, we replace the hard-coded 256 intermediate

features at the S2 level with features the system learns. . . . . . . . . 19

2-1 Typical stimuli used in our experiments. From left to right: Training
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Chapter 1

Introduction

Detecting a pedestrian in your view while driving. Classifying an animal as a cat

or a dog. Recognizing a familiar face in a crowd. These are all examples of object

recognition at work. A system that performs object recognition is solving a diffi-

cult computational problem. There is high variability in appearance between objects

within the same class and variability in viewing conditions for a specific object. The

system must be able to detect the presence of an object–for example, a face–under dif-

ferent illuminations, scale, and views, while distinguishing it from background clutter

and other classes.

The primate visual system seems to perform object recognition effortlessly while

computer vision systems still lag behind in performance. How does the primate visual

system manage to work both quickly and with high accuracy? Evidence from exper-

iments with primates indicates that the ventral visual pathway, the neural pathway

for initial object recognition processing, has a hierarchical, feed-forward architecture

[11]. Several biological models have been proposed to interpret the findings from

these experiments. One such computational model of object recognition in cortex is

HMAX. HMAX models the ventral visual pathway, from the primary visual cortex

(V1), the first visual area in the cortex, to the inferotemporal cortex, an area of the

brain shown to be critical to object recognition [5]. The HMAX model architecture

is based on experimental results on the primate visual cortex, and therefore can be

used to make testable predictions about the visual system.
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While HMAX performs well for paperclip-like objects [10], the hard-coded features

do not generalize well to natural images and clutter (see Chapter 2). In this thesis

we build upon HMAX by adding object-specific features and apply the new model to

the task of face detection. We evaluate the properties of the new model and compare

its performance to the original HMAX model and machine vision systems. Further

extensions were made to the architecture to explore unsupervised learning of features

and the use of a biologically plausible classifier.

1.1 Related Work

Object recognition can be viewed as a learning problem. The system is first trained

on example images of the target object class and other objects, learning to distinguish

between them. Then, given new images, the system can detect the presence of the

target object class.

In object recognition systems, there are two main variables in an approach that

distinguish one system from another. The first variable is what features the system

uses to represent object classes. These features can be generic, which can be used

for any class, or class-specific. The second variable is the classifier, the module that

determines whether an object is from the target class or not, after being trained

on labeled examples. In this section, I will review previous computer vision and

biologically motivated object recognition systems with different approaches to feature

representation and classification.

1.1.1 Computer Vision

An example of a system that uses generic features is described in [8]. The system

represents object classes in terms of local oriented multi-scale intensity differences

between adjacent regions in the images and is trained using a support vector machine

(SVM) classifier. A SVM is an algorithm that finds the optimal separating hyperplane

between two classes [17]. SVM can be used for separable and non-separable data sets.

For separable data, a linear SVM is used, and the best separating hyperplane is found

16



in the feature space. For non-separable cases, a non-linear SVM is used. The feature

space is first transformed by a kernel function into a high-dimensional space, where

the optimal hyperplane is found.

In contrast, [2] describes a component-based face detection system that uses class-

specific features. The system automatically learns components by growing image

parts from initial seed regions until error in detection is minimized. From these im-

age parts, components are chosen to represent faces. In this system, the image parts

and their geometric arrangement are used to train a two-level SVM. The first level

of classification consists of component experts that detect the presence of the com-

ponents. The second level classifies the image based on the components categorized

in the first level and their positions in the image.

Another object recognition system that uses fragments from images as features is

[15]. This system uses feature selection on the feature set, a technique we will explore

in a later chapter. Ullman and Sali choose fragments from training images that

maximize the mutual information between the fragment and the class it represents.

During classification, first the system searches the test image at each location for the

presence of the stored fragments. In the second stage, each location is associated with

a magnitude M, a weighted sum of the fragments found at that location. For each

candidate location, the system verifies that (1) the fragments are from a sufficient

subset of the stored fragments and (2) positions of the fragments are consistent with

each other (e.g. for detecting an upright face, the mouth fragment should be located

below the nose). Based on the magnitude and the verification, the system decides

whether or not the presence of the target class is in a candidate location.

1.1.2 Biological Vision

The primate visual system has a hierarchical structure, building up from simple to

more complex units. Processing in the visual system starts in the primary visual

cortex (V1), where simple cells respond optimally to an edge at a particular location

and orientation. As one travels further along the visual pathway to higher order visual

areas of the cortex, cells have increasing receptive field size as well as increasing

17



complexity. The last purely visual area in the cortex is the inferotemporal cortex

(IT). In results presented in [4], neurons were found in monkey IT that were tuned to

specific views of training objects for an object recognition task. In addition, neurons

were found that were scale, translation, and rotation invariant to some degree. These

results motivated the following view-based object recognition systems.

SEEMORE

SEEMORE is a biologically inspired visual object recognition system [6]. SEEMORE

uses a set of receptive-field like feature channels to encode objects. Each feature

channel Fi is sensitive to color, angles, blobs, contours or texture. The activity of Fi

can be estimated as the number of occurrences of that feature in the image. The sum

of occurrences is taken over various parameters such as position and scale depending

on the feature type.

The training and test sets for SEEMORE are color video images of 3D rigid and

non-rigid objects. The training set consists of several views of each object alone, vary-

ing in view angle and scale. For testing, the system has to recognize novel views of

the objects presented alone on a blank background or degraded. Five possible degra-

dations are applied to the test views: scrambling the image, adding occlusion, adding

another object, changing the color, or adding noise. The system uses nearest-neighbor

for classification. The distance between two views is calculated as the weighted city-

block distance between their feature vectors. The training view that has the least

distance from a test view is considered the best match.

Although SEEMORE has some qualities similar to biological visual systems, such

as the use of receptive-field like features and its view-based approach, the goal of

the system was not to be a descriptive model of an actual animal visual system [6]

and therefore can not be used to make testable predictions about biological visual

systems.
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where feature learning occurs 

Figure 1-1: The HMAX model. The first layer, S1, consists of filters tuned to different
areas of the visual field, orientations (oriented bars at 0, 45, 90, and 135 degrees) and
scales. These filters are analogous to the simple cell receptive fields found in the V1
area of the brain. The C1 layer responses are obtained by performing a max pooling
operations over S1 filters that are tuned to the same orientation, but different scales
and positions over some neighborhood. In the S2 layer, the simple features from the
C1 layer (the 4 bar orientations) are combined into 2 by 2 arrangements to form 256
intermediate feature detectors. Each C2 layer unit takes the max over all S2 units
differing in position and scale for a specific feature and feeds its output into the view-
tuned units. In our new model, we replace the hard-coded 256 intermediate features
at the S2 level with features the system learns.
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HMAX

HMAX models the ventral visual pathway, from the primary visual cortex (V1), the

first visual area in the cortex, to the inferotemporal cortex, an area critical to object

recognition [5]. HMAX’s structure is made up of alternating levels of S units, which

perform pattern matching, and C units, which take the max of the S level responses.

An overview of the model can be seen in Figure 1-1. The first layer, S1, consists

of filters (first derivative of gaussians) tuned to different areas of the visual field,

orientations (oriented bars at 0, 45, 90, and 135 degrees) and scales. These filters

are analogous to the simple cell receptive fields found in the V1 area of the brain.

The C1 layer responses are obtained by performing a max pooling operations over S1

filters that are tuned to the same orientation, but different scales and positions over

some neighborhood. In the S2 layer, the simple features from the C1 layer (the 4 bar

orientations) are combined into 2 by 2 arrangements to form 256 intermediate feature

detectors. Each C2 layer unit takes the max over all S2 units differing in position

and scale for a specific feature and feeds its output into the view-tuned units.

By having this alternating S and C level architecture, HMAX can increase speci-

ficity in feature detectors and increase invariance. The S levels increase specificity

and maintain invariance. The increase in specificity stems from the combination of

simpler features from lower levels into more complex features.

HMAX manages to increase invariance due to the max pooling operation at the

C levels. For example, suppose a horizontal bar at a certain position is presented to

the system. Since each S1 filter template matches with one of four orientations at

differing positions and scales, one S1 cell will respond most strongly to this bar. If

the bar is translated, the S1 filter that responded most strongly to the horizontal bar

at that position has a weaker response. The filter whose response is greatest to the

horizontal bar at the new position will have a stronger response. When max is taken

over the S1 cells in the two cases, the C1 cell that receives input from all S1 filters

that prefer horizontal bars will receive the same level of input on both cases.

An alternative to taking the max is taking the sum of the responses. When taking
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the sum of the S1 outputs, the C1 cell would also receive the same input from the

bar in the original position and the moved position. Since one input to C1 would

have decreased, but the other would have increased, the total response remains the

same. However, taking the sum does not maintain feature specificity when there are

multiple bars in the visual field. If a C1 cell is presented with an image containing

a horizontal and vertical bar, when summing the inputs, the response level does not

indicate whether or not there is a horizontal bar in the field. Responses to the vertical

and the horizontal bar are both included in the summation. On the other hand, if

the max is taken, the response would be of the most strongly activated input cell.

This response indicates what bar orientation is present in the image. Because max

pooling preserves bar orientation information, it is robust to clutter [10].

The HMAX architecture is based on experimental findings on the ventral visual

pathway and is consistent with results from physiological experiments on the pri-

mate visual system. As a result, it is a good biological model for making testable

predictions.

1.2 Motivation

The motivation for my research is two-fold. On the computational neuroscience side,

previous experiments with biological models have mostly been with single objects on

a blank background, which do not simulate realistic viewing conditions. By using

HMAX on face detection, we are testing out a biologically plausible model of object

recognition to see how well it performs on a real world task.

In addition, in HMAX, the intermediate features are hard-coded into the model

and learning only occurs from the C2 level to the view-tuned units. The original

HMAX model uses the same features for all object classes. Because these features are

2 by 2 combination of bar orientations, they may work well for paperclip like objects

[10], but not for natural images like faces. When detecting faces in an image with

background clutter, these generic features do not differentiate between the face and

the background clutter. For a face on clutter, some features might respond strongly
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to the face while others respond strongly to the clutter, since the features are specific

to neither. If the responses to clutter are stronger than the ones to faces, when taking

the maximum activation over all these features, the resulting activation pattern will

signal the presence of clutter, instead of a face. Therefore these features perform

badly in face detection. The extension to HMAX would permit learning of features

specific to the object class and explores learning at lower stages in the visual system.

Since these features are specific to faces, even in the presence of clutter, these features

will have a greater activation to faces than clutter parts of the images. When taking

the maximum activation over these features, the activation pattern will be robust

to clutter and still signal the presence of a face. Using class-specific features should

improve performance in cluttered images.

For computer vision, this system can give some insight how to improve current

object recognition algorithms . In general, computer vision algorithms use a central-

ized approach to account for translation and scale variation in images. To achieve

translation invariance, a global window is scanned over the image to search for the

target object. To normalize for scale, the image is replicated at different scales, and

each of them are searched in turn. In contrast, the biological model uses distributed

processing through local receptive fields, whose outputs are pooled together. The

pooling builds up translation and scale invariance in the features themselves, allow-

ing the system to detect objects in images of different scales and positions without

having to preprocess the image.

1.3 Roadmap

Chapter 2 explains the basic face detection task, HMAX with feature learning ar-

chitecture, and analyzes results from simulations varying system parameters. Per-

formance from these experiment are then compared to the original HMAX. Chapter

3 presents results from testing the scale and translation invariance of HMAX with

feature learning. Next, in Chapter 4, I investigate unsupervised learning of features.

Chapter 5 presents results from using a biologically-plausible classifier with the sys-
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tem. Chapter 6 contains conclusions and discussion of future work.
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Chapter 2

Basic Face Detection

In this chapter, we discuss the basic HMAX with feature learning architecture, com-

pare its performance to standard (original) HMAX, and present results on parameter

dependence experiments.

2.1 Face Detection Task

Each system (i.e. standard HMAX and HMAX with feature learning) is trained on a

reduced data set similar to [2] consisting of 200 synthetic frontal face images generated

from 3D head models [18] and 500 non-face images that are scenery pictures. The

test sets consist of 900 “synthetic faces”, 900 “cluttered faces”, and 179 “real faces”.

The “synthetic faces” are generated from taking face images from 3D head models

[18] that are different from training but are synthesized under similar illumination

conditions. The “cluttered faces” are the “synthetic faces” set, but with the non-face

image as background. The “real faces” are real frontal faces from the CMU PIE face

database [13] presenting untrained extreme illumination conditions. The negative test

set consists of 4,377 background images consider in [1] to be difficult non-face set. We

decided to use a non-face set for testing different type from the training non-face set

because we wanted to test using non-faces that could possibly be mistaken for faces.

Examples for each set are given in Figure 2-1.
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Figure 2-1: Typical stimuli used in our experiments. From left to right: Training faces
and non-faces, “cluttered (test) faces”, “difficult (test) faces” and test non-faces.

2.2 Methods

2.2.1 Feature Learning

To obtain class-specific features, the following steps are performed (the steps are

shown in Figure 2-3): (1) Obtain C1 activations of training images using HMAX. Fig-

ure 2-2 shows example C1 activations from faces and non-faces. (2) Extract patches

from training faces at the C1 layer level. The locations of the patches are randomized

with each run. There are two parameters that can vary at this step: the patch size

p and the number of patches m extracted from each face. Each patch is a p × p × 4

pattern of C1 activation w, where the last 4 comes from the four different preferred

orientations of C1 units. (3) Obtain the set of features u by performing k-means,

a clustering method [3], on the patches. K-means groups the patches by similarity.

The representative patches from each group are chosen as features, the number of

which is determined by another parameter n. These features replace the intermediate

S2 features in the original HMAX. The level in the HMAX hierarchy where feature

learning takes place is indicated by the arrow in Figure 1-1. In all simulations, p var-

ied between 2 and 20, n varied between 4 and 3,000, and m varied between 1 and 750.

These S2 units behave like gaussian rbf-units and compute a function of the squared

distance between an input pattern and the stored prototype: f(x) = exp− ||x−u||2

2σ2 ,

with σ chosen proportional to patch size.
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Figure 2-2: Typical stimuli and associated responses of the C1 complex cells (4 ori-
entations). Top: Sample synthetic face , cluttered face, real face, non-faces. Bottom:
The corresponding C1 activations to those images. Each of the four subfigures in the
C1 activation figures maps to the four bar orientations (clockwise from top left: 0,
45, 135, 90 degrees). For simplicity, only the response at one scale is displayed. Note
that an individual C1 cell is not particularly selective either to face or to non-face
stimuli.
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Figure 2-3: Sketch of the hmax model with feature learning: Patterns on the model
“retina” are first filtered through a continuous layer S1 (simplified on the sketch) of
overlapping simple cell-like receptive fields (first derivative of gaussians) at different
scales and orientations. Neighboring S1 cells in turn are pooled by C1 cells through
a max operation. The next S2 layer contains the rbf-like units that are tuned to
object-parts and compute a function of the distance between the input units and the
stored prototypes (p = 4 in the example). On top of the system, C2 cells perform
a max operation over the whole visual field and provide the final encoding of the
stimulus, constituting the input to the classifier. The difference to standard hmax lies
in the connectivity from C1→S2 layer: While in standard hmax, these connections
are hardwired to produce 256 2× 2 combinations of C1 inputs, they are now learned
from the data. (Figure adapted from [12])
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2.2.2 Classification

After HMAX encodes the images by a vector of C2 activations, this representation is

used as input to the classifier. The system uses a Support Vector Machine [17] (svm)

classifier, a learning technique that has been used successfully in recent machine

vision systems [2]. It is important to note that this classifier was not chosen for

its biological plausibility, but rather as an established classification back-end that

allows us to compare the quality of the different feature sets for the detection task

independent of the classification technique.

2.3 Results

2.3.1 Comparison to Standard HMAX and Machine Vision

System

As we can see from Fig. 2-4, the performance of standard HMAX system on the face

detection task is pretty much at chance: The system does not generalize well to faces

with similar illumination conditions but include background (“cluttered faces”) or

to faces in untrained illumination conditions (“real faces”). This indicates that the

generic features in standard HMAX are insufficient to perform robust face detection.

The 256 features cannot be expected to show any specificity for faces vs. background

patterns. In particular, for an image containing a face on a background pattern, some

S2 features will be most activated by image patches belonging to the face. But, for

other S2 features, a part of the background might cause a stronger activation than

any part of the face, thus interfering with the response that would have been caused

by the face alone. This interference leads to poor generalization performances, as

shown in Fig. 2-4.

As an illustration of the feature quality of the new model vs. standard HMAX, we

compared the average C2 activations on test images (synthetic faces and non-faces)

using standard HMAX’s hard-coded 256 features and 200 face-specific features. As

shown in Fig. 2-5, using the learned features, the average activations are linearly
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separable, with the faces having higher activations than non-faces. In contrast, with

the hard-coded features, the activation for faces fall in the same range as non-faces,

making it difficult to separate the classes by activation.
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(b) cluttered faces and non-faces
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(c) real faces and non-faces

Figure 2-4: Comparison between the new model using object-specific learned features
and the standard HMAX by test set. For synthetic and cluttered face test sets, the
best set of features had parameters:p = 5, n = 480, m = 120. For real face test set,
the best set of features were p = 2, n = 500, m = 125. The new model generalizes
well on all sets and outperforms standard HMAX.

2.3.2 Parameter Dependence

Fig. 2-7 shows the dependence of the model’s performance on patch size p and the

percentage of face area covered by the features (the area taken up by one feature (p2)

times the number of patches extracted per faces (m) divided by the area covered by

30



0 1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

Image number

A
ve

ra
ge

 C
2 

ac
tiv

at
io

n

synthetic faces
non−faces

0 1000 2000 3000 4000 5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Image number

A
ve

ra
ge

 C
2 

ac
tiv

at
io

n

synthetic faces
non−faces

Figure 2-5: Average C2 activation of synthetic test face and test non-face set. Left:
using standard HMAX features. Right: using features learning from synthetic faces.

one face). As the percentage of the face area covered by the features increases, the

overlap between features should in principle increase. Features of intermediate sizes

work best for “synthetic” and “cluttered” faces 1, while smaller features are better

for “real” faces. Intermediate features work best for detecting faces that are similar

to the training faces because first, compared with larger features, they probably have

more flexibility in matching a greater number of faces. Secondly, compared to smaller

features they are probably more selective to faces. Those results are in good agreement

with [16] where gray-value features of intermediate sizes where shown to have higher

mutual information. When the training and test sets contain different types of faces,

such as synthetic faces vs. real faces, the larger the features, the less capable they are

to generalize to real faces. Smaller feature work the best for real faces because they

capture the least amount of detail specific to face type.

Performance as a function of the number of features n show first a rise with

increasing numbers of features due to the increased discriminatory power of the feature

dictionary. However, at some point performance levels off. With smaller features (p =

2, 5), the leveling off point occurs at a larger n than for larger features. Because small

features are less specific to faces, when there is a low number of them, the activation

pattern of face and non-faces are similar. With a more populated feature space for

faces, the activation pattern will become more specific to faces. For large features,

such as 20x20 features which almost cover an entire face, a feature set of one will

15 × 5 and 7 × 7 features for which performances are best correspond to cells’ receptive field of
about a third of a face.
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already have a strong preferences to similar faces. Therefore, increasing the number

of features has little effect. Fig. 2-6 shows performances for p = 2, 5, 7, 10, 15, 20,

m = 100, and n = 25, 50, 100, 200, 300.
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Figure 2-6: Performance (ROC area) of features learned from synthetic faces with
respect to number of learned features n and p (fixed m = 100). Performance increases
with the number of learned features to a certain level and levels off. Top left: system
performance on synthetic test set. Top right: system performance on cluttered test
set. Bottom: performance on real test set.
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Figure 2-7: Performance (ROC area) with respect to % face area covered and p. In-
termediate size features performed best on synthetic and cluttered sets, small features
performed best on real faces. Top left: system performance on synthetic test set. Top
right: system performance on cluttered test set. Bottom : performance on real test
set.
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Chapter 3

Invariance in HMAX with Feature

Learning

In physiological experiments on monkeys, cells in the inferotemporal cortex demon-

strated some degree of translation and scale invariance [4]. Simulation results have

shown that the standard HMAX model exhibits scale and translation invariance [9],

consistent with the physiological results. This chapter examines invariance in the

performance of the new model, HMAX with feature learning.

3.1 Scale Invariance

Scale invariance is a result of the pooling at the C1 and C2 levels of HMAX. Pooling

at the C1 level is performed in four scale bands. Band 1, 2, 3, 4 have filter standard

deviation ranges of 1.75-2.25, 2.75-3.75, 4.25-5.25, and 5.75-7.25 pixels and spatial

pooling ranges over neighborhoods of 4x4, 6x6, 9x9, 12x12 cells respectively. At

the C2 level, the system pools over S2 activations of all bands to get the maximum

response.

In the simulations discussed in the previous chapter, the features were extracted

at band 2, and the C2 activations were a result of pooling over all bands. In this

section, we wish to explore how each band contributes to the pooling at the C2 level.

As band size increases, the area of the image which a receptive field covers increases.
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Figure 3-1: C1 activations of face and non-face at different scale bands. Top (from
left to right): Sample synthetic face, C1 activation of face at band 1, band 2, band
3, and band 4. Bottom: Sample non-faces, C1 activation of non-face at band 1, band
2, band 3, and band 4. Each of the four subfigures in the C1 activation figures maps
to the four bar orientations (clockwise from top left: 0, 45, 135, 90 degrees).

Example C1 activations at each band are shown in Fig. 3-1. Our hypothesis is that

as face size changes, the band most tuned to that scale will “take over” and become

the maximum responding band.

Figure 3-2: Example images of rescaled faces. From left to right: training scale, test
face rescaled -0.4 octave, test face rescaled +0.4 octave

In the experiment, features are extracted from synthetic faces at band 2, then the

system is trained using all bands. The system is then tested on synthetic faces on

a uniform background, resized from 0.5-1.5 times the training size (Fig. 3-2) using

bands 1-4 individually at the C2 level and also pooling over all bands. The test

non-face sets are kept at normal size, but are pooled over the same bands as their

respective face test sets. The rescale range of 0.5-1.5 was chosen to try to test bands
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a half-octave above and an octave below the training band.
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Figure 3-3: ROC area vs. log of rescale factor. Trained on synthetic faces, tested on
900 rescaled synthetic test faces. Images size is 100x100 pixels

As shown in Fig. 3-3, for small faces, the system at band 1 performs the best out

of all the bands. As face size increases, performance at band 1 drops and band 2 take

over to become the dominate band. At band 3, system performance also increase

as face size increases. At large face sizes (1.5 times training size), band 3 becomes

the dominate band while band 2 starts to decrease in performance. Band 4 has

poor performance for all face sizes. Since its receptive fields are an octave above the

training band’s, to see if band 4 continues its upward trend in performance we re-ran

the simulations with 200x200 images and a rescale range of 0.5-2 times the training

size.

The average C2 activation to synthetic test faces vs. rescale amount is shown

in Fig. 3-4. The behavior of the C2 activations as image size changes is consistent

with the ROC area data above. At small sizes, band 1 has the greatest average C2

activations. As the size becomes closer to the training size, band 2 becomes the most

activated band. At large face sizes, band 3 is the most activated. For band 4, as

expected, the C2 activation increases as face size increases, however, its activation is
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consistently lower than any of the other bands. In this rescale range, band 4 is bad

for detecting faces. Additional experiments to try is to increase the image size and

rescale range furthers to see if band 4 follows this upward trend, or train with band

3 and since band 4 and 3 are closer in scale than band 2 and 4, performance should

improve.
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Figure 3-4: Average C2 activation vs. log of rescale factor. Trained on synthetic
faces, tested on 900 rescaled synthetic test faces. Image size is 200x200 pixels

These results (from performance measured by ROC area and average C2 activa-

tions) agree with the “take over” effect we expected to see. As face size decreases and

band scale is held constant, the area of the face a C1 cell covers increases. The C1

activations of the smaller face will match poorly with the features trained at band 2.

However, when the C1 activations are taken using band 1, each C1 cell pools over a

smaller area, thereby compensating for rescaling. Similarly as face size increases from

the training size, the C1 cell covers less area. Going from band 2 to band 3, each C1

cell pools over a larger area.

When using all bands (Fig. 3-3), performance stays relatively constant for sizes

around the training size, then starts to drop off slightly at the ends. The system

has constant performance even though face size changes because the C2 responses
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are pooled from all bands. As the face size varies, we see from the performance of

the system on individual bands that at least one band will be strongly activated and

signal the presence of a face. Although face scale may change, by pooling over all

bands, the system can still detects the presence of the resized face.

3.2 Translation Invariance

Like scale invariance, translation invariance is the result of the HMAX pooling mech-

anism. From the S1 to the C1 level, each C1 cell pools over a local neighborhood of

S1 cells, the range determined by the scale band. At the C2 level, after pooling over

all scales, HMAX pools over all positions to get the maximum response to a feature.

Figure 3-5: Examples of translated faces. From left to right: training position, test
face shifted 20 pixels, test face shifted 50 pixels

To test translation invariance, we trained the system on 200x200 pixels faces and

non-faces. The training faces are centered frontal faces. For the face test set, we

translated the images 0, 10, 20, 30, 40, and 50 pixels either up, down, left, or right.

Example training and test faces can be seen in Fig. 3-5.

From the results of this experiments (Fig. 3-6), we can see that performance stays

relatively constant as face position changes, demonstrating the translation invariance

property of HMAX.
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Figure 3-6: ROC area vs. translation amount. Trained on 200 centered synthetic
faces, tested on 900 translated synthetic test faces.
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Chapter 4

Exploring Features

In the previous experiments, the system has been trained using features extracted only

from faces. However, training with features from synthetic faces on blank background

does not reflect the real world learning situation where there are imperfect training

stimuli consisting of both the target class and distractor objects. In this chapter, I

explore (1) training with more realistic feature sets, and (2) selecting “good” features

from these sets to improve performance.

4.1 Different Feature Sets

The various feature sets used for training are:

1. “face only” features - from synthetic faces with blank background (the same set

used in previous chapters, mentioned here for comparison)

2. “mixed”features - from synthetic faces with blank background and from non-

faces (equal amount of face and non-face patches fed into k-means to get feature

set)

3. “cluttered” features” - from cluttered synthetic faces (training set size of 900)

4. “mixed cluttered” features - from both cluttered synthetic faces and non-faces

(equal amount of cluttered face and non-face patches fed into k-means to get

feature set)
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5. features from real faces (training set size of 42)

For each simulation, the training faces used correspond with the feature set used.

For example, when training using “mixed cluttered” features, cluttered faces are used

as the training face set for the classifier. The test sets used are the same as the system

described in Chapter 2: 900 synthetic faces, 900 cluttered faces, 179 real faces, and

4,377 non-faces.

The performance of the feature sets are shown in Fig. 4-1. For all feature sets, the

test face set most similar to the training set performed best. This result makes sense

since the most similar test set would have the same distribution of C2 activations as

the training set.
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(c) cluttered features
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(d) mixed cluttered features
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Figure 4-1: Performance of features extracted from synthetic, cluttered, and real
training sets, tested on synthetic, cluttered, and real tests sets using svm classifier.
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“Mixed” features perform worse than face only features. Since these features

consist of face and non-face patches, these features are no longer as discriminatory

for faces. Faces respond poorly to the non-face tuned features while non-faces are more

activated. Looking at the training sets’ C2 activations using “mixed” features (Fig. 4-

2), we see that the average C2 activation of synthetic faces decreases as compared to

the average C2 activation using face only features, while the average C2 activation of

non-faces increases. As a result, the two classes are not as easily separable, accounting

for the poor performance. To improve performance, feature selection is explored in

the next section.
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Figure 4-2: Average C2 activation of training sets. Left: using face only features
Right: using mixed features.

“Mixed clutter” features also display poor performance for the cluttered face test

set, although performance on real faces is better than when trained on cluttered

features. To explore the reason behind these results, we have to examine the fea-

tures themselves, what is the distribution of “good” features (ones that are better at

distinguishing between faces and non-faces) and “bad” features. One technique to

measure how “good” a feature is by calculating its ROC. Figures 4-3 to 4-6 show the

distribution of features by ROC for feature sets 1-4.

Mixed features sets (“mixed”, “mixed cluttered”) have more features with low

ROCs than pure face feature sets (“face only”, “cluttered”), but less features with

high ROCs. If we take low ROC to mean that these features are good non-face

detectors, including non-face patches produces features tuned to non-faces. In Fig. 4-

6, when using “cluttered” features vs. “mixed cluttered” features on real faces, both
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Figure 4-3: ROC distribution of feature sets when calculated over their respective
training sets

have very few good face detectors, as indicated by the absences of high ROC features.

However, the “mixed cluttered” set has more features tuned to non-faces. Having

more non-face features may be a reason why “mixed cluttered” performs better on

real faces: these features can better distinguish non-faces from real faces.

We compare our system trained on real faces with other face detections systems:

the component-based system described in [2], and a whole face classifier [7]. HMAX

with feature learning performs better than machine vision systems (Fig. 4-7). Some

possible reasons for the better performance: (1) our system uses real faces to train,

while the component-based system uses synthetic faces, so our features are more tuned

to real faces (2) our features are constructed from C1 units, while the component-

based system’s features are pixel values. Our features, along with HMAX’s hierar-

chical structure, make the features more generalizable to images in different viewing

conditions. (3) the component-based system uses an svm classifier to learn features

while our system uses k-means. The svm requires a large number of training examples

in order to find the best separating hyperplane. Since we only train with 42 faces, we
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Figure 4-4: ROC distribution of feature sets when calculated over synthetic face set

should expect the computer vision system ’s performance to improve if we increase

training set size. The whole face classifier is trained on real faces and uses a whole

face template to detect faces. From these results, it seems that face parts are more

flexible to variations in faces than a face template.
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Figure 4-5: ROC distribution of feature sets when calculated over cluttered face set
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Figure 4-6: ROC distribution of feature sets when calculated over real face set
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Figure 4-7: Comparison of HMAX with feature learning, trained on real faces and
tested on real faces, with computer vision systems.
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4.2 Feature Selection

In training using the “mixed” and “mixed cluttered” feature sets, we are taking a step

toward unsupervised learning. Instead of training only on features from the target

class, the system is given features possibly from faces and non-faces.

We try to improve performance of these mixed feature sets by selecting a subset of

“good” features. We apply the following methods to select features, picking feature

by :

1. highest ROC - pick features that have high hit rates for faces and low false

alarm rates for non-faces

2. highest and lowest ROC - features that are are good face or non-face detectors.

Chosen by taking the features with ROC farthest from 0.5

3. highest average C2 activation - high C2 activations on training faces maybe

equivalent to good face detecting features [10]

4. mutual information - pick out features that contribute the most amount of infor-

mation to deciding image class. Mutual information for a feature is calculated

by: MI(C,X) =
∑

C

∑
X p(c, x) log(p(c, x)/(p(x)p(c)) where C is the class (face

or non-face) and X is the feature (value ranges from 0-1). This feature selection

method has been used in computer vision systems [16]. Note: In the algorithm,

X takes on discrete values. Since the responses to a feature can take on a con-

tinuous value between 0-1, we discretized the responses, flooring the value to

the nearest tenth.

5. random - baseline performance to compare with above methods (averaged over

five iterations)

Results of applying the five feature selection techniques on “mixed” features and

“mixed cluttered” features to get 100 best features are shown in Fig. 4-8 and Fig. 4-9

respectively.
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Figure 4-8: Performance of feature selection on “mixed”features. Left: for cluttered
face set. Right: for real face set. In each figure, ROC area of performance with (from
left to right): face only features, all mixed features, highest and lowest ROC, only
highest ROC, average C2 activation, mutual information, and randomly. ROC areas
are given at the top of each bar.

In all the feature selection results, picking features by highest ROC alone (method

1) performed better than by highest and lowest ROC (method 2). From the better

performance, we can conclude that picking by highest ROC, even though it may in-

clude features with ROC’s around chance, the system performs better than including

low ROC features but having fewer high ROC features. Although from the previous

section, we saw that good non-face features did help performance for the real face set,

in that case there were very few face features so good non-faces features had more

impact. In comparison to having more face features, non-face features seem not to be

as important. There seems to be two possible reasons for this result that come from

comparing the ROC of features on the training sets versus the test sets (Fig. 4-10 and

Fig. 4-11). First, when picking features by method 1, we get some features that have

ROCs around chance for the training set, but they have high ROCs for the test sets.

If we use method 2, these features are not picked. Secondly, the training and test

non-face sets are different types of non-faces. The first consists of scenery pictures,

while the latter are hard non-faces as deemed by an LDA classifier [1]. The features

tuned to the training non-face set may perform poorly on the test non-face set. In

Fig. 4-11, we see that the training and test feature ROCs are less correlated for low
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Figure 4-9: Performance of feature selection on “mixed cluttered”features. Top left:
for synthetic face set. Top right: for cluttered face set. Bottom: for real face set. In
each figure, ROC area of performance with (from left to right): face only features, all
mixed features, highest and lowest ROC, only highest ROC, average C2 activation,
mutual information, and randomly. ROC areas are given at the top of each bar.

ROCs than for high ROC , showing that non-face detectors do not generalize well.

In the “mixed” features set, for cluttered faces, selection by highest ROC value

performed the best, almost as well as faces only. For real faces, feature selection by C2

activation performed the best. Also, in the “mixed cluttered” feature set, C2 average

selection method performed the best out of all the methods for all test sets. Since the

activations were averaged over only face responses, picking the features with the high

response to faces might translate into good face detectors that are robust to clutter

[10].

Mutual information (MI) of “mixed” features calculated using the training set
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Figure 4-10: Feature ROC comparison between the “mixed” features training set and
test sets. Left: Feature ROC taken over training set vs. cluttered faces and non-face
test sets. Right: Feature ROC taken over training set vs. real faces and non-face test
sets.

have low correlation (all less than 0.1) with ones calculated using the test sets. The

features that have high MI for the training set may or may not have high MI for the

test sets. Therefore we do not expect performance of feature selection by MI to be

any better than random, which is what we see in Fig. 4-8. For the “mixed cluttered”

feature set, the MI correlation between the training set and synthetic, cluttered, and

real test sets are 0.15, 0.20, and 0.0550 respectively. The increased correlation for

synthetic and cluttered sets may be why we see better performances for this set

(Fig. 4-9), than for “mixed” features.

4.3 Conclusions

In this chapter, we explored using unsupervised learning to obtain features, then

selecting “good” features to improve performance. The results have shown that only

selecting good face features (from using methods such as highest ROC and average

C2 activation) are more effective than selecting both good face and non-face features.

Because faces have less variability in shape than non-faces (which can be images of

buildings, cars, trees, etc.), a good non-face feature for one set of non-faces may

generalize poorly to other types of non-faces, while face feature responses are more
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Figure 4-11: Feature ROC comparison between the “mixed cluttered” features train-
ing set and test sets. Top left: Feature ROC taken over training set vs. synthetic face
and non-face test sets. Top right: Feature ROC taken over training set vs. cluttered
face and non-face test sets. Bottom: Feature ROC taken over training set vs. real
face and non-face test sets.

consistent across sets. Selecting features by average C2 activation gives us a simple,

biologically-plausible method to find good features. A face tuned cell can be created

by choosing C2 units as afferents that response highly to faces.
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Chapter 5

Biologically Plausible Classifier

In all the experiments discussed so far, the classifier used is the svm. As touched

upon in Chapter 2, we decided to use an svm so that we could compare the results

to other representations. However, svm is not a biologically-plausible classifier. In

the training stage of an svm, in order to find the optimal separating hyperplane, the

classifier has to solve a quadratic programming problem. This problem can not easily

be solved by neural computation. In the following set of experiments, we replace the

svm with a simpler classification procedure.

5.1 Methods

After obtaining the C2 activations of the training face set, we use k-means (same

algorithm used for getting features from patches) on the C2 activation to get “face

prototypes” (FP). Instead of creating representative face parts, now we are getting

representative whole faces, encoded by an activation pattern over C2 units. The

number of face prototypes is a parameter f , which varied from 1 to 30 in these

simulations. To classify an image, the system takes the Euclidean distance between

the image’s C2 activation vector and the C2 activation of each face prototype. The

minimum distance over all the face prototypes is recorded as that image’s likeness to

a face. The face prototypes can be thought of as rbf-like face units, so the minimum

distance to the prototypes is equivalent to the maximum activation over all the face
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units. Our hypothesis is that face images will have similar C2 activation patterns as

the face prototypes, so their maximum activation will be larger than non-face images’.

Then to distinguish faces from non-faces, the system can set a maximum activation

threshold value, where anything above the threshold is a face, anything below it is

a non-face, creating a simple classifier. In these experiments, the classifier did not

have a set threshold. To measure performance, we varied the threshold to produce

an ROC curve.

Since k-means initializes its centers randomly, for all experiments in this chapter,

we average the results over five runs.

5.2 Results

5.2.1 Face Prototype Number Dependence

We varied the number of face prototypes from 1 to 30 on all five training sets to see

how performance changes as the number of face prototypes increased. The results

are shown in Fig. 5-1.

Performance does not vary greatly when training on cluttered and synthetic faces.

Yet with real faces, prototype of one gives the best performance, then for increasing

number of prototypes, the ROC area drops sharply then levels off.

The face prototypes cover the C2 unit space for faces. As the number of prototypes

increases, the better the space that is covered. What the C2 unit space for face and

non-faces looks like will determine what effect increasing coverage will have on the

performance of using k-means as classifier. Looking at the distribution of the average

C2 activation of the training sets might give us a clue (Fig. 5-2). For feature sets

trained on synthetic and cluttered faces, most of the average face C2 activations for

these features cluster around the mean activation, with distribution falling off as the

activations are farther from the mean. Therefore, the first face prototypes capture

the majority of the faces. As face prototype number increases, additional prototypes

capture the outliers. These prototypes might increase performance by covering more
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of the C2 unit space, but they also might decrease performance if they also are closer

to non-faces. However, since outliers are few, performance does not fluctuate greatly

as a result.

The distribution of the average C2 units of the training real faces is similar to the

other training sets. Its standard deviation is higher than the other sets, which indi-

cates that the outliers are further away. Additional face prototypes are then further

away from the mean as well, potentially capturing more non-faces and decreasing

performance. However, taking the average does not give us much insight into what is

happening in the feature space because it reduces the whole space into one number.

One possible solution is to reduce the high-dimensional feature space into a small

enough space so that the data can be visualized yet still maintain the space’s struc-

ture. We can only speculate that the feature space is shaped such that the additional

face prototypes capture the face outliers but also non-faces.
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Figure 5-1: Varying number of face prototypes. Trained and tested on synthetic,
cluttered sets using k-means classifier.
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Figure 5-2: Distribution of average C2 activations on training face set for different
features types.
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5.2.2 Using Face Prototypes on Previous Experiments
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Figure 5-3: Comparing performance of svm to k-means classifier on the four feature
types. Number of face prototypes = 10. From top left going clockwise: on face only
features, mixed features, mixed cluttered features, and cluttered features

We re-ran the same simulations presented in the last chapter, but replaced the

svm with the k-means classifier. Figure 5-3 compares the performance of using the

svm versus the k-means classifier. For face only, “mixed”, and real faces feature

sets (Fig. 5-4), k-means performance is comparable to the svm. For cluttered and

“mixed cluttered” feature sets, k-means performs worse then the svm. A possible

reason for the decreased performance of cluttered training sets is that k-means only

uses the training face set to classify. Face prototypes of cluttered faces, might be

similar to both faces and non-faces, making the two sets hard to separate based

solely on distance to the nearest face. In contrast, the svm uses both face and non-

face information to find the best separating plane between the two.

The results for the feature selection simulations are shown in Figures 5-5 and 5-

6. The relative performance of the various feature selection methods changes when

we use k-means. For example, mutual information replaces C2 as the best method

for “mixed cluttered” features. Because k-means and svm are inherently different

(one uses a separating plane, the other using minimum distance to a center), it is
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Figure 5-4: Comparison of HMAX with feature learning (using SVM and k-means as
classifier, trained on real faces and tested on real faces, with computer vision systems.
The k-means system used 1 face prototype.

expected that their outcomes might differ. The two classifiers weigh the features

differently. The svm sets weights to the features that maximizes the width of the

separating hyperplane. In the k-means classifier, how much each feature contributes

depends on where in the feature space the nearest face prototype is. Any of the

feature selection methods could have selected both good and bad features in varying

proportions. Performance then depends on which features the classifier weights more.

Further exploration into the reasons for the different outputs is relegated to future

work.
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Figure 5-5: Performance of feature selection on “mixed”features using the k-means
classifier. Left: for cluttered face set. Right: for real face set. Feature selection
methods listed in the legend in the same notation used as Chapter 4.
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Figure 5-6: Performance of feature selection on “mixed cluttered”features using the
k-means classifier. Top: for synthetic face set. Bottom left: for cluttered face set.
Bottom right: for real face set. Feature selection methods listed in the legend in the
same notation as in Chapter 4.
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5.3 Conclusions

The svm ’s training stage is complex and not biologically plausible, but once the sep-

arating hyperplane is found, the classification stage is simple. Given the hyperplane,

a data point is classified based on which side of the plane it is on. The k-means train-

ing stage is biologically feasible to implement using self-organizing cortical maps. For

classification, face-tuned cells can set an activation threshold, and anything above

that threshold is labeled a face. Both the svm and k-means classifier have some

usability issues. The svm requires a substantial number of training points in order

to perform well. In addition, there are parameters that one can vary such as kernel

type and data chunk size that influence performance. For the k-means classifier, per-

formance is poorer if non-face information is needed to classify images, for example

images that contain clutter. Secondly, the issue of how many face prototypes to use

to get the best performance is dependent on the shape of the feature space. What

the optimal number for one training set may not apply to another set.
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Chapter 6

Discussion

Computer vision system traditionally have simple features, such as wavelets and pixel

value, along with a complex classification procedure (preprocessing to normalize for

illumination, searching for object in different scaled images and position) [8, 2, 15].

In contrast, HMAX, a biological computer vision system, has complex features, but

a simpler classification stage. The pooling performed in HMAX builds scale and

translation invariance into the final C2 encoding. However, HMAX’s hard-coded

features do not perform well on the face detection task.

The goal of the new HMAX model was to replace the hard-coded features with

object specific features –namely face parts, and see if performance improved. As

expected, HMAX with feature learning performed better than the standard HMAX

on the face detection task. The average C2 activations of the two type of features

show that the object specific features are more tuned toward faces than non-faces,

while HMAX’s features have no such preference. By integrating object-specificity

into the HMAX architecture, we were able to build a system whose performance is

competitive with current computer vision systems.

Additional simulations found that the new model also exhibited scale and trans-

lation invariance. Explorations into unsupervised feature learning, feature selections,

and the use of a simple classifier gave promising results. However, more investigation

into the underlying mechanisms behind the results needs to be done in order to have

a full understanding.
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For future work on the HMAX model, further exploration on feature selection

and alternative classification methods needs to be done to turn the new model into

a fully biologically-plausible system. In our experiments, we have only looked at a

basic face detection task. Theoretically, the model should be easily extendable to

other tasks just by replacing the features. It will be interesting to apply the model

for car detection, and for even more specific recognition tasks, such as recognition

between faces with the same features we currently use. Results would determine if

the system works well regardless of the specific recognition task.
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